

Recent work and future plans of the Atmospheric Dispersion Modelling Liaison Committee (ADMLC)

Simon Gant, HSE (Chair of ADMLC)

25th Annual George Mason University Conference on Atmospheric Transport and Dispersion Modeling 2-4 November 2021

Outline

- Introduction to the ADMLC
- Summary of recent activities
- Ongoing projects
- Future work

Background

1977: Representatives of UK government departments, utilities and research organisations met to discuss calculation methods for atmospheric dispersion of radioactive releases

 Informal steering committee set up to review recent developments in dispersion modelling (predecessor to ADMLC)

1995: ADMLC formally established with initial focus on the nuclear industry **Since 1995**:

- Focus widened to include range of interests of its members, including UK and Irish industrial and regulatory organisations
- Aim: to review atmospheric dispersion and related phenomena for application primarily to authorization or licensing of discharges to atmosphere resulting from industrial, commercial or institutional sites
- Main interests on fixed sources, rather than transport sources, inc. both routine releases and releases in accident or "upset" conditions

ADMLC Membership 2021

Public Health England

Cyfoeth Naturiol Cymru **Natural Resources** Wales

ADMLC Organisation

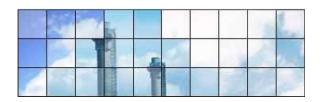
- ADMLC Committee meetings held 3 times per year
- Each member organization contributes £3k each year (\$4.1k)
- Public workshop/seminar every 2 to 3 years
 - Impact of uncertainty in dispersion modelling and provision of advice, 2017
 - Challenges in modelling for emergency planning and response to contaminant releases, March 2020

Webinars

- Dispersion modelling in emergency response, January 2021
- Satellite-based monitoring and atmospheric dispersion modelling as complementary techniques, May 2021
- Guidelines for the preparation of short-range dispersion modelling assessments for compliance with regulatory requirements
 - Last update published in February 2021

ADMLC Organisation

- Small research projects commissioned (typically up to £55k):
 - Modelling pollutant dispersion from non-point sources (2016)
 - Presenting uncertain information in radiological emergencies (2016)
 - Sensitivity of dispersion modelling results to source terms (2017)
 - Applicability of Gaussian modelling techniques to near-field dispersion (2021)
 - Dispersion modelling of odour emissions (2021)
 - Dense-gas dispersion for industrial regulation and emergency response (2021)
- Hosting of dispersion model validation datasets on website
 - e.g. Thorney Island, SMEDIS database
- Reports and datasets all publicly available
 - http://www.admlc.com



Dense gas dispersion

Review by Rachel Batt (HSE)

			S

1	INTRODUCTION	7	roview by readilet batt (1162)
1.1	What is a dense gas?	7	. Mark so funded by ADMIC and HCE
1.2	Background	7	 Work co-funded by ADMLC and HSE
1.3	INDUSTRIAL REGULATION AND EMERGENCY PREPAREDNESS AND RESPONSE	8	Chroadahaat of dance are validation
1.4	This review	8	 Spreadsheet of dense gas validation
1.5	REPORT STRUCTURE	8	datasets and incidents available from
2 2.1	INDUSTRIAL REGULATION AND EMERGENCY PREPAREDNESS AND RESPONSE INTRODUCTION	11 11	www.admlc.com/publications
2.2	FRAMEWORKS FOR INDUSTRIAL REGULATION IN THE UK	11	· · · · · · · · · · · · · · · · · · ·
2.3	FRAMEWORKS FOR EMERGENCY PREPAREDNESS AND RESPONSE IN THE UK	16	
2.4 PREF	INTERNATIONAL FRAMEWORKS FOR INDUSTRIAL REGULATION AND EMERGENCY PAREDNESS AND RESPONSE	19	5.9 OTHER MODELS IN FREQUENT USE FOR ATMOSPHERIC DISPERSION MODELLING
2.5	SUMMARY	24	5.10 SUMMARY
3 3.1	Physics of dense-gas dispersion Introduction	25 25	6 Dense gas dispersion experiments 6.1 Introduction
3.2	Dense gases	25	6.2 SUITABILITY OF DATASETS FOR MODEL EVALUATION
3.3	EVOLUTION OF A DENSE GAS CLOUD	31	6.3 MODEL VALIDATION DATABASES
3.4	FACTORS THAT AFFECT DISPERSION OF DENSE GASES	32	6.4 EXISTING EXPERIMENTAL REVIEWS
3.5	FACTORS AFFECTING INGRESS/INFILTRATION	53	6.5 INDIVIDUAL EXPERIMENTS
3.6	FLAMMABLE AND TOXIC END POINTS AND LIMITS OF EXPOSURE	60	6.6 SUMMARY
3.7	SUBSTANCE INFORMATION SOURCES	65	7 Measures for mitigating dense gas releases
	Dense gas dispersion incidents	67	7.1 Introduction
4.1	Introduction	67	7.2 GUIDANCE
4.2	INCIDENT DATABASES / REPORTING SYSTEMS	67	7.3 Measures that affect the vapour source
4.3	EXISTING INCIDENT REVIEWS	71	7.4 Measures that directly mitigate the dispersion of gas
4.4	UK INCIDENTS INVOLVING DISPERSION OF DENSE GASES	73	7.5 MEASURES THAT MITIGATE EXPOSURE
4.5	WORLDWIDE INCIDENTS INVOLVING DISPERSION OF DENSE GASES	77	7.6 SUMMARY
4.6	SEMI-CONFINED CASES	116	8 Scenarios
4.7	SUMMARY	121	8.1 Introduction
5 5.1	MODELLING DENSE GAS DISPERSION INTRODUCTION	131 131	8.2 EXISTING SCENARIOS
5.2	TYPES OF MODEL	131	8.3 New scenarios
5.3	ASSUMPTIONS AND PARAMETERISATIONS	141	9 Discussion
5.4	Previous model reviews	147	9.1 FUTURE TRENDS AND EMERGING TECHNOLOGIES
5.5	MODEL EVALUATION	151	9.2 POTENTIAL KNOWLEDGE/DATA GAPS AND FUTURE WORK
5.6	GUIDELINES AND GOOD PRACTICE GUIDANCE	155	10 Conclusions
5.7	MODELS FOR PREDICTING DENSE GAS DISPERSION OUTDOORS	156	11 REFERENCES
E 0	Model e cor reprieting ingress of dense gases into stolletings	195	

Odour Modelling

ADMLC/2021/4

1	Introduction	1			
2	y concepts in odour criteria and assessment Odour nuisance and FIDOL Odour criteria: an overview Peak and hourly average concentrations Modelling peak and hourly average concentrations Odour hours				
3	Assessment criteria and methodology in different countries 3.1 Australia 3.2 Austria 3.3 Czech Republic 3.4 Estonia 3.5 Germany 3.6 Ireland 3.7 Italy 3.8 Latvia 3.9 Lithuania 3.10 The Netherlands 3.11 New Zealand 3.12 United Kingdom 3.13 Summary of criteria in the selected countries	7 7 12 12 12 13 14 14 15 15 16 16			
4	lels used for odour assessment Gaussian Plume models Lagrangian models Examples of models commonly used for odour dispersion lelling				
5	Validation studies 5.1 Measurement methods used in odour model validation studies 5.2 Selected validation studies 5.2.1 Conclusions	24 24 25 31			
6	Model Intercomparison 6.1 Overview of models and datasets used 6.2 OROD dataset 6.2.1 General experimental setup 6.2.2 Data provided 6.2.3 Model runs 6.3 CEDVAL dataset 6.3.1 General experimental setup 6.3.2 Data provided 6.3.2 Data provided 6.3.3 Model runs 6.4 Riga Port dataset 6.4.1 Assessment area 6.4.2 Monitoring data 6.4.3 Modelled sources 6.4.4 Meteorological data	33 33 34 34 37 37 42 42 42 49 49 51 54 56			

A Review of Approaches to Dispersion Modelling of Odour Emissions and Intercomparison of Models and Odour Nuisance Assessment Criteria

C.S. Price¹, J. Stocker¹, K. Johnson¹, R. Patel¹, S. Strickland¹ J. Doktarova², J Rubinis²

¹ Cambridge Environmental Research Consultants Ltd (CERC)

² SIA Estonian, Latvian and Lithuanian Environment (ELLE)

		6.4.5 ADMS model runs	57
		6.4.6 AUSTAL2000 runs	66
	6.5	Styria pig farm dataset	69
		6.5.1 Experimental setup and dataset	69
		6.5.2 Model runs	71
	6.6	Summary	76
7	Effic	acy of the different approaches in odour dispersion	
modelli		, , , , , , , , , , , , , , , , , , , ,	77
	7.1	Percentile of hourly averages approaches	77
		7.1.1 The origin of the criteria	77
		7.1.2 Challenges for validation	78
		7.1.3 Trends and reasons for poor prediction in validation	
		studies	79
		7.1.4 Possible modifications using variable percentile values	81
	7.2	Sub-hourly average approaches	83
		7.2.1 Real world – what affects peak concentrations and	
		fluctuations?	83
		7.2.2 Peak-to-mean ratio modelling approaches	84
		7.2.3 Statistical approaches	86
	7.3	Universal challenges in odour dispersion modelling	90
8	DIS	CUSSION	92
Acknov	vledg	gements	93
Refere	nces		94

Ongoing ADMLC Project

- Impact of different grid resolutions of NWP met data on atmospheric dispersion modelling for application to:
 - Regulatory air quality impact assessments
 - Probabilistic accident consequence assessments for radiological releases
- Literature review
- Simulations using data from one or more NWP models, at three spatial resolution levels (e.g., 1.5 km, 4 km and 12 km)
- Different release scenarios: ground level and elevated sources
- Both flat and complex terrain
- Assess potential for double counting of terrain effects
- PHE PACE model to be used for radiological assessment
- Contract awarded to CERC. Work to start in November 2021

Future ADMLC Projects

Possible future ADMLC research projects (<u>www.admlc.com/work</u>):

- 1. Application of models to the design of monitoring networks
- 2. A review of model evaluation procedures
- 3. Dry/wet deposition of gases and particulates
- 4. Modelling of sources in an emergency
- 5. Fire source terms and plume rise
- 6. Understanding the impact of meteorological uncertainties

ADMLC is seeking to partner with other funding agencies or selffunding research organisations on topics of mutual interest

https://www.harmo.org/Conferences/Proceedings/_Bruges/publishedSections/PPT/H19-057_Hort_Gant.pdf

Future Webinar

- Use of dispersion modelling for sensor network design and inverse modelling, February 2022
- Introduced and co-chaired by Veronica Bowman (DSTL)
- Four talks:
 - Matthew Goodwin (AWE)
 - Benjamin Truchot (INERIS)
 - Anders Helgeland (FFI)
 - Paul Westoby (DSTL)
- Free to attend
- Details provided in due course: <u>www.admlc.com/events</u>

- Thanks to the ADMLC committee members and Secretariat:
 - Justin Smith and Peter Bedwell (PHE, now UK Health Security Agency)
- Contact: <u>admlc@phe.gov.uk</u>

Thank you

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy