

Carbon Capture, Utilization and Storage (CCUS): Policy Perspectives and Science

Stew McEwen, James Rutherford, Simon Gant and Zoe Chaplin

- Pipeline Safety Regulations (PSR) 1996
- Policy perspectives on CO₂ pipelines
- Previous scientific work on CCUS at HSL
- Future directions?

- PSR provides a risk-based goal-setting approach to regulating pipelines in Great Britain
- The regulations cover:
 - Definition of a pipeline
 - General requirements for all pipelines (design, construction, operation etc.)
 - Requirement for co-operation amongst pipeline operators
 - Measures to prevent damage to pipelines
 - Amendments to other regulations

- Major Accident Hazard Pipeline (MAH) is one which conveys a dangerous fluid
- Classification of dangerous fluid given in Schedule 2 of PSR (see next slide)
- PSR sets out requirements for MAH pipelines:
 - Emergency shut-down valves
 - Notifications
 - Major accident prevention document
 - Emergency procedures
 - Emergency plan

- 1. Flammable, boiling point < 5°C at 1 bar(a) and conveyed in the pipeline as a liquid.
- 2. Flammable, conveyed in the pipeline as a gas at above 8 bar(a)
- **3.** Liquid with vapour pressure > 1.5 bar(a) at temperature of pipeline or 20° C
- 4. Toxic/very toxic fluid which is gas at 20°C and 1 bar(a) and is conveyed as a liquid or a gas
- 5. Toxic with vapour pressure > 0.4 bar at 20°C h and is conveyed in the pipeline as a liquid
- 6. Acrylonitrile
- 7. Very toxic with saturated vapour pressure > 0.001 bar(a) at 20°C or is conveyed in the pipeline as a liquid at a pressure > 4.5 bar(a)
- 8. Oxidising fluid conveyed as a liquid
- 9. Fluid which reacts violently with water
- **10.**Oxidising liquid and toxic or very toxic fluid, or reacts violently with water if it has been, or is liable to be classified, pursuant to regulation 5 of the Chemicals (Hazard Information and Packaging for Supply) Regulations 1994, as the case may be, oxidising, toxic, very toxic or reacts violently with water.

CCUS Policy Perspectives

- HSE published guidance on CO₂ pipelines: <u>http://www.hse.gov.uk/pipelines/co2conveying-full.htm</u>
- CO₂ is not currently classified as a "dangerous fluid" under PSR (1996)
 - Therefore CO₂ pipelines not treated as MAH pipelines
 - Not subject to controls under land-use planning
- However...
 - Previous HSE work has argued that CO₂ pipelines should be treated as MAH pipelines
 - Status remains under review
 - There are other relevant provisions in existing regulations (see next slide)

- Health & Safety at Work etc. Act 1974, Sections 2 and 3
 - Employers are required to ensure the heath and safety of their employees and others so far as is reasonably practicable
 - CO₂ pipeline operators required to take a proportionate approach to managing the risks from conveying CO₂ at every stage of the pipeline's lifetime
 - Demonstrated through a comprehensive risk assessment which takes account of the range of risks that arise from the design, commissioning, operation (including maintenance and inspection) and decommissioning of the CO₂ pipeline

CCUS Policy Perspectives

- ALARP
 - Operators of CO₂ pipelines can demonstrate compliance with PSR and HSWA by making sure that the risks from their pipelines are reduced as low as is reasonably practicable (ALARP)
 - Application of good practice at the design stage is an essential part of this demonstration

CCUS Policy Perspectives

- Further guidance on HSE website on the topics of:
 - Corrosion
 - Ductile and brittle fracture propagation
 - Saturation pressure
 - CO₂ stream composition and flow assurance
 - Modelling loss of containment
 - Non-metallic components
 - Fluid classification
 - Guidance and Standards

http://www.hse.gov.uk/pipelines/co2conveying-full.htm

Outline

- Pipeline Safety Regulations (PSR) 1996
- Policy perspectives on CO₂ pipelines
- Previous scientific work on CCUS at HSL
- Future directions

Previous Scientific Work at HSL

Several large EU, UK Government and industry-funded projects:

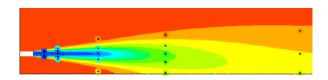
- CO2PipeHaz
 - <u>http://co2pipehaz.eu/</u>
- MATTRAN
 - <u>https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/G061955/1</u>
- COOLTRANS
 - Cosham *et al.* (2016) "Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipeline" <u>http://dx.doi.org/10.1115/IPC2016-64456</u>
 - Cooper R. and Barnett J. (2014) "Pipelines for transporting CO₂ in the UK" <u>https://doi.org/10.1016/j.egypro.2014.11.264</u>
- COSHER
 - Ahmad et al. (2015) "COSHER joint industry project: Large scale pipeline rupture tests to study CO₂ release and dispersion" <u>https://doi.org/10.1016/j.ijggc.2015.04.001</u>
- CO2PIPETRANS
 - <u>https://www.dnvgl.com/oilgas/joint-industry-projects/ongoing-jips/co2pipetrans.html</u>

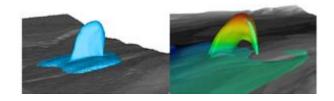
Previous Scientific Work at HSL

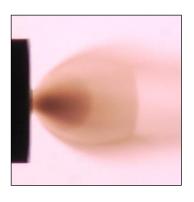
	E Executive					
Home	News	Guidance	About HSE	Books	Contact HSE	

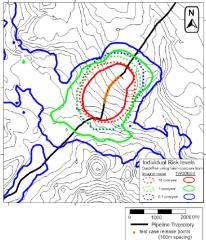
HSE » About HSE » HSE's work » Science & research » Resources » Research report series » Research reports 1101-1200 » RR1121

Science, engineering and evidence			
Annual science review			
Find a publication 🖙			
FAQs			
- Resources			
Research report series			
+ Research reports archive			
Insight research			
HSE: Innovation in Regulation			
Related content			
 HSE Buxton Laboratory IP 			


- HSE Foresight Centre
- Workplace Health Expert Committee (WHEC)
- Contract opportunities
- Statistics
- Economics of health and safety
- LOE ishs


RR1121 - Overview of carbon capture and storage (CCS) projects at HSE's Buxton Laboratory


Over the last decade, the UK Government has supported innovation and growth in Carbon Capture and Storage (CCS) technology with the aim of commercial deployment. CCS research across the UK has reduced potential risks by helping to develop a thorough understanding of the operational hazards and by contributing to the design of safe plant and processes.


This report provides an overview of applied scientific work on CCS undertaken at HSE's Buxton Laboratory. The work includes laboratory-scale and field-scale experiments, evaluation of complex dispersion models for dense-phase carbon dioxide releases, development of decision support tools for pipeline risk assessment and publication of best practice guidelines. In particular, work has focussed on assessing the hazards posed by the accidental release of densephase carbon dioxide transported by pipeline. The research has been primarily funded by HSE and industry, with support from the European Union.

HSE's scientific work will help reduce both the risks and costs of any future development of industrial-scale CCS by contributing to the assessment and control of risks early in the design and deployment of the technology. The research has contributed to the scientific evidence base that, if CCS is deployed in with UK, will inform HSE policy decisions to ensure that the regulatory framework for pipelines is effective and proportionate to the potential risks associated with CCS.

http://www.hse.gov.uk/research/rrhtm/rr1121.htm

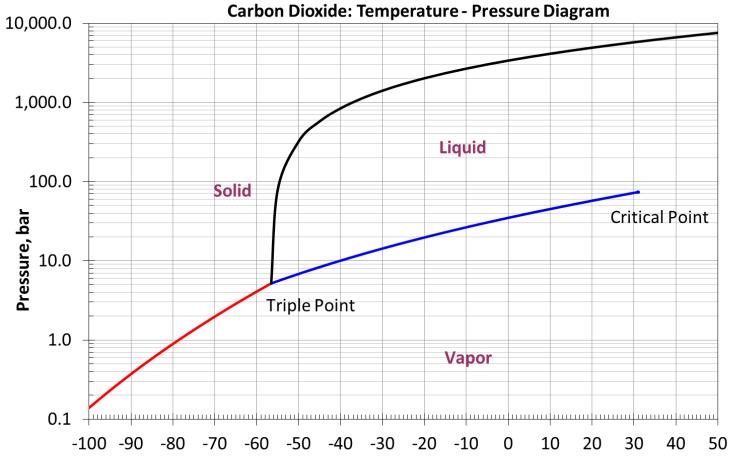
CONTENTS

http://www.hse.gov.uk/research/rrhtm/rr1121.htm

1	INTRODUCTION	. 1
2	HSE RESEARCH PROJECTS	2
2.1	Assessment of the major hazard potential of CO2	2
2.2	Comparison of risks from CO2 and natural gas pipelines	4
2.3	Concentration fluctuations and toxic load	6
2.4	Sensitivity analysis of CO ₂ jet dispersion models	
2.5	Validation of CFD dispersion models with Shell	
2.6	Integral modelling of CO ₂ pipeline outflow and dispersion	
2.7	Flammability of hydrocarbon and CO ₂ mixtures	
2.8	Experimental work at HSL	13
3	CO₂PIPEHAZ	
3.1	Objectives	
3.2	Partners	
3.3	Dispersion modelling	
3.4	Decision support	
3.5	Conclusions	
3.6	Impact	
0.0		_
4	COOLTRANS	23
4.1	Background	23
4.2	Partners	23
4.3	Objectives	
4.4	Model Evaluation Protocol (MEP)	
4.5	Conclusions	
4.6	Impact	25
5	CO2PIPETRANS	26
5.1	Background	
5.2	Participants	
5.3	Methodology	
5.4	JIP progress	
5.5	HSE and HSL involvement	27
5.6	Impact	

6	SHERPA CONSULTING REPORT ON CO2 PIPELINES	28
7	IEA GHG REPORT	29
7.1	Background	29
7.2	Objectives	29
7.3	Methodology	29
7.4	Conclusions	29
8	DECATUR PROJECT	31
8.1	Background	31
8.2	Objectives	31
9	PROGRESSIVE ENERGY PROJECT	32
9.1	Background	32
9.2	Objectives	32
9.3	Methodology	
9.4	Conclusions	32
9.5	Impact	32
10	RWE-NPOWER PROJECT	33
10.1	Background	33
10.2	Objectives	33
10.3	Methodology	33
10.4	Conclusions	33
11	CONCLUSIONS	34
12	REFERENCES	35

Future directions?



- What are the main scientific research questions and knowledge gaps that need to be addressed to enable the safe adoption of CCUS ?
 - e.g. Ship transport poor understanding of CO₂ releases onto water, no experimental data available?
 - e.g. Running ductile fractures in dense-phase CO₂ pipelines –
 experimental data shows models are non-conservative/unreliable
 - e.g. What lessons have been learnt from recent operational experience with CCUS, e.g. Boundary Dam, Sleipner
 - e.g. What is the current status of academic research in CCUS safety?

Thank you

The contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

Temperature, °C