## Abstract

Wall functions are widely used in commercial CFD software and offer significant savings in computational expense compared to low-Reynolds-number formulations. However, existing wall functions are based on assumed near-wall profiles of velocity, turbulence parameters and temperature which are inapplicable in complex, non-equilibrium flows. A new wall function is developed in this thesis which, instead of assuming profiles of the dependent variables, determines these quantities by solving boundary-layer-type transport equations across a locally-defined subgrid.

The new wall function, called UMIST-*N*, is applied to three test cases: an axisymmetric impinging jet, a spinning "free" disc and a three-dimensional simplified car body. The impinging jet flow (H/D = 4; Re = 70,000) is studied using linear and non-linear  $k - \varepsilon$  models with the UMIST-*N* wall function, four "standard" log-law-based wall functions and full low-*Re* treatments. It is demonstrated that heat transfer predictions with the UMIST-*N* wall function are in excellent agreement with low-*Re* model results, in contrast to standard log-law-based wall functions. The new wall function also shows less sensitivity to the size of the near-wall cell than standard wall functions.

Spinning-disc calculations are carried out at rotational Reynolds numbers up to  $Re_{\phi} = 3.3 \times 10^6$  using a similar array of turbulence models and wall treatments. The UMIST-*N* wall function and low-*Re* model results are again in excellent agreement, in contrast to standard wall functions which are unable to predict correctly the radial velocity profile. The location of the predicted transition point from laminar to turbulent flow on the spinning-disc shows some slight sensitivity to the near-wall grid arrangement with the UMIST-*N* wall function, although the results are close to those obtained with the low-*Re* models.

Simulation of the simplified "Ahmed" body flow demonstrates that the UMIST-*N* wall function can be applied to complex geometry using a non-orthogonal multiblock grid. Flow predictions over the 25° rear slant of the car using UMIST-*N* with linear  $k - \varepsilon$  model are shown to be similar to those obtained using a log-law-based wall function.

In the three test-cases considered, computing times with the new wall function are up to twice as high as for standard wall functions, but they are still an order-of-magnitude less than low-Reynolds-number calculations.

## Contents

| De | eclara | tion    |                                     | i   |
|----|--------|---------|-------------------------------------|-----|
| Ac | know   | ledgem  | ents                                | ii  |
| Al | ostrac | t       |                                     | iii |
| Co | ontent | ts      |                                     | iii |
| No | omeno  | ature   |                                     | X   |
| 1  | Intro  | oductio | n & Literature Survey               | 1   |
|    | 1.1    | Backg   | ound                                | 1   |
|    | 1.2    | Turbul  | ence modelling                      | 4   |
|    | 1.3    | Near-V  | Vall Flow Phenomena                 | 8   |
|    | 1.4    | Wall F  | unctions vs. Low- <i>Re</i> Models  | 14  |
|    | 1.5    | Study   | Objectives                          | 18  |
|    | 1.6    | Outline | e of Thesis                         | 19  |
| 2  | Mat    | hematic | al Models                           | 21  |
|    | 2.1    | Reynol  | ds-Averaged Navier-Stokes Equations | 21  |
|    | 2.2    | Linear  | $k - \varepsilon$ Model             | 22  |
|    | 2.3    | Non-L   | inear $k - \varepsilon$ Model       | 25  |
|    | 2.4    | "Stand  | ard" Wall Functions                 | 28  |
|    |        | 2.4.1   | Common Features                     | 29  |
|    |        | 2.4.2   | Launder & Spalding (TEAM)           | 32  |
|    |        | 2.4.3   | Simplified Chieng & Launder (SCL)   | 32  |
|    |        | 2.4.4   | Chieng & Launder (CL)               | 33  |
|    |        | 2.4.5   | Johnson & Launder (JL) $\ldots$     | 34  |
|    |        | 2.4.6   | Chieng & Launder Modifications      | 35  |
|    |        | 2.4.7   | NLEVM Implementation                | 35  |

## CONTENTS

| 3 | Nun | nerical Implementation                          |
|---|-----|-------------------------------------------------|
|   | 3.1 | The Finite-Volume Method                        |
|   |     | 3.1.1 SIMPLE Pressure-Correction Algorithm      |
|   |     | 3.1.2 Under-Relaxation                          |
|   | 3.2 | TEAM Code                                       |
|   |     | 3.2.1 Storage Arrangement                       |
|   |     | 3.2.2 Differencing Schemes                      |
|   |     | 3.2.3 Wall-Function Implementation              |
|   |     | 3.2.4 Convergence Criteria                      |
|   | 3.3 | STREAM Code                                     |
|   |     | 3.3.1 Grid Arrangement                          |
|   |     | 3.3.2 Dimensionless Parameters                  |
|   |     | 3.3.3 Differencing Schemes                      |
|   |     | 3.3.4 Wall-Function Implementation              |
|   |     | 3.3.5 Pressure on the Wall Surface              |
|   |     | 3.3.6 Rhie-Chow Interpolation                   |
|   |     | 3.3.7 Convergence Criteria                      |
| 4 | Sub | grid-Based Wall Function: UMIST-N               |
|   | 4.1 | Assumptions & Methodology                       |
|   | 4.2 | Governing Equations                             |
|   |     | 4.2.1 2- <i>D</i> Cartesian Grid                |
|   |     | 4.2.2 Non-Orthogonal Curvilinear Grid           |
|   | 4.3 | Implementation                                  |
|   |     | 4.3.1 Discretized Equations                     |
|   |     | 4.3.2 Under-Relaxation                          |
|   |     | 4.3.3 Boundary Conditions                       |
|   |     | 4.3.4 Subgrid Residuals                         |
|   |     | 4.3.5 Calculation of Wall-Function Parameters   |
|   |     | 4.3.6 Generating the Subgrid Mesh               |
|   |     | 4.3.7 Multiblock Implementation                 |
|   |     | 4.3.8 Solution Sequence                         |
|   | 4.4 | Validation: Channel Flow Results                |
| 5 | Imp | inging Jet Flow                                 |
|   | 5.1 | Introduction                                    |
|   | 5.2 | Previous Experimental and Computational Studies |
|   | 5.3 | Computational Details                           |
|   |     | 5.3.1 Models Used                               |

v

|   |      | 5.3.2 Numerical Methods                         | 97   |
|---|------|-------------------------------------------------|------|
|   |      | 5.3.3 Domain and Grid                           | 98   |
|   |      | 5.3.4 Boundary Conditions                       | 99   |
|   | 5.4  | Calculated Flow Results                         | 101  |
|   |      | 5.4.1 Linear $k - \varepsilon$                  | 101  |
|   |      | 5.4.2 NLEVM                                     | 104  |
|   | 5.5  | Computational Costs                             | 108  |
|   | 5.6  | Discussion & Conclusions                        | 109  |
|   | ~ .  |                                                 |      |
| 6 | Spin | ining "Free" Disc Flow                          | 110  |
|   | 6.1  |                                                 | 110  |
|   | 6.2  | Previous Experimental and Computational Studies | 112  |
|   | 6.3  | Computational Details                           | 113  |
|   |      | 6.3.1 Models Used                               | 113  |
|   |      | 6.3.2 Numerical Methods                         | 113  |
|   |      | 6.3.3 Domain and Grid                           | 115  |
|   |      | 6.3.4 Boundary Conditions                       | 117  |
|   |      | 6.3.5 Initial Turbulence Levels                 | 117  |
|   |      | 6.3.6 Differential Length-Scale Correction      | 122  |
|   |      | 6.3.7 Code Validation                           | 122  |
|   | 6.4  | Calculated Flow Results                         | 123  |
|   |      | 6.4.1 Linear $k - \varepsilon$ Model            | 123  |
|   |      | 6.4.2 NLEVM 1                                   | 125  |
|   | 6.5  | Computational Costs                             | 127  |
|   | 6.6  | Discussion & Conclusions                        | 128  |
| _ |      |                                                 | 1.20 |
| 7 | Ahm  | led Body Flow                                   | 130  |
|   | 7.1  |                                                 | 130  |
|   | 7.2  | Previous Experimental and Computational Studies | 130  |
|   | 7.3  | Computational Details                           | 135  |
|   |      | 7.3.1 Models Used                               | 135  |
|   |      | 7.3.2 Numerical Methods                         | 135  |
|   |      | 7.3.3 Domain and Grid                           | 136  |
|   |      | 7.3.4 Boundary Conditions                       | 136  |
|   | 7.4  | Calculated Flow Results                         | 137  |
|   | 7.5  | Discussion & Conclusions                        | 142  |

## CONTENTS

| 8  | Disc        | ussion and Conclusions                                                      | 145 |
|----|-------------|-----------------------------------------------------------------------------|-----|
|    | 8.1         | Preliminary Remarks                                                         | 145 |
|    | 8.2         | Conclusions                                                                 | 146 |
|    | 8.3         | Further Work                                                                | 148 |
| Ap | pend        | ices                                                                        | 149 |
| A  | RAN         | IS Equations for Axisymmetric Swirling Flow                                 | 150 |
|    | A.1         | Linear $k - \varepsilon$ Model                                              | 151 |
|    | A.2         | Non-Linear $k - \varepsilon$ Model                                          | 154 |
| B  | Intro       | oduction to Curvilinear Coordinates                                         | 155 |
|    | B.1         | Definition of a Vector                                                      | 155 |
|    | B.2         | Transformation Properties of Covariant and Contravariant Tensors            | 155 |
|    | B.3         | Covariant and Contravariant Base Vectors, $\mathbf{g}_i$ and $\mathbf{g}^i$ | 156 |
|    | B.4         | The Jacobian Matrix, $[J]$                                                  | 160 |
|    | B.5         | Determinant of the Jacobian Matrix, J                                       | 160 |
|    | B.6         | Inverse of the Jacobian Matrix, $[J]^{-1}$                                  | 161 |
|    | <b>B.</b> 7 | Covariant Metric Tensor, $g_{ij}$                                           | 162 |
|    | B.8         | Determinant of the Covariant Metric Tensor Matrix, g                        | 163 |
|    | B.9         | Contravariant Metric Tensor, $g^{ij}$                                       | 164 |
|    | B.10        | Second Order Tensors, T                                                     | 166 |
|    | B.11        | Christoffel Symbols of the First Kind, $\Gamma_{ijk}$                       | 166 |
|    | B.12        | Christoffel Symbols of the Second Kind, $\Gamma_{ij}^k$                     | 167 |
|    | B.13        | Gradient of a Scalar, $\nabla \phi$                                         | 169 |
|    | B.14        | Covariant Derivatives of Vectors and Tensors                                | 170 |
|    | B.15        | Covariant Derivative of the Metric Tensor                                   | 171 |
|    | B.16        | Gradient of a Vector, $\nabla \mathbf{v}$                                   | 172 |
|    | B.17        | Divergence of a Vector, $\nabla \cdot \mathbf{v}$                           | 173 |
|    | B.18        | Divergence of a Tensor, $\nabla \cdot \mathbf{T}$                           | 174 |
|    | B.19        | Summation Convention                                                        | 175 |
|    | B.20        | Physical Components                                                         | 175 |
|    | B.21        | Key Formulae                                                                | 176 |
| С  | RAN         | S Equations in Curvilinear Coordinates                                      | 179 |
|    | C.1         | Vector Form                                                                 | 179 |
|    | C.2         | Cartesian Coordinates                                                       | 180 |
|    | C.3         | Summation Convention                                                        | 181 |
|    | C.4         | Transformation Rules                                                        | 186 |
|    | C.5         | Non-Orthogonal Curvilinear Coordinates                                      | 187 |

vii

|   |            | C.5.1          | Physical Velocity Components                                                                                                                           | 188 |
|---|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |            | C.5.2          | RANS Equations Using Physical Velocity Vectors                                                                                                         | 188 |
|   |            | C.5.3          | Examination of Curvilinear Transport Equations                                                                                                         | 193 |
|   |            | C.5.4          | Non-Conservative Convection                                                                                                                            | 196 |
|   |            | C.5.5          | Alternative Approach to Derivation                                                                                                                     | 197 |
| D | <b>C</b> 1 | • 1 337        |                                                                                                                                                        | 100 |
| D | Subg       | grid Wa        | II Function Transport Equations                                                                                                                        | 199 |
|   | D.I        | Convec         | tion of Momentum                                                                                                                                       | 199 |
|   | D.2        | U-Mon          | nentum                                                                                                                                                 | 201 |
|   | D.3        | V-Mon          | nentum                                                                                                                                                 | 202 |
|   | D.4        | Scalar,        | Ф                                                                                                                                                      | 203 |
|   | D.5        | Turbule        | ent Kinetic Energy, $k \ldots $ | 203 |
|   | D.6        | Dissipa        | tion Rate, $\tilde{\epsilon}$                                                                                                                          | 204 |
|   | D.7        | Non-Li         | near EVM                                                                                                                                               | 205 |
|   | D.8        | Differe        | ntial Yap Correction                                                                                                                                   | 208 |
| E | Num        | nerical T      | Freatment of Subgrid Transport Equations                                                                                                               | 209 |
|   | E.1        | 1 <i>-D</i> Di | ffusion                                                                                                                                                | 209 |
|   | E.2        | Convec         | tion Parallel to the Wall                                                                                                                              | 211 |
|   | E.3        | Convec         | tion Normal to the Wall                                                                                                                                | 213 |
|   | E.4        | Summa          | ary of Discretized Convection Terms                                                                                                                    | 214 |
|   | E.5        | Source         | Terms                                                                                                                                                  | 214 |
|   |            | E.5.1          | <i>U</i> -Momentum                                                                                                                                     | 214 |
|   |            | E.5.2          | V-Momentum                                                                                                                                             | 216 |
|   |            | E.5.3          | Turbulent Kinetic Energy, $k$                                                                                                                          | 216 |
|   |            | E.5.4          | Dissipation Rate, $\tilde{\epsilon}$                                                                                                                   | 217 |
|   |            | E.5.5          | Main-Grid $P_{c3}$ Source Term                                                                                                                         | 217 |
|   | E.6        | Grid G         | eneration and Geometric Parameters                                                                                                                     | 219 |
|   |            | E.6.1          | Generating the Subgrid Mesh                                                                                                                            | 219 |
|   |            | E.6.2          | Interpolation to Subgrid Cell Boundaries                                                                                                               | 223 |
|   |            | E.6.3          | Covariant Metric Tensor. $g_{ii}$                                                                                                                      | 225 |
|   |            | E.6.4          | Jacobian, $J$                                                                                                                                          | 231 |
|   |            | E.6.5          | Contravariant Metric Tensor, $g^{ij}$                                                                                                                  | 231 |
|   |            | E.6.6          | Christoffel Symbol, $\Gamma^{i}_{, i}$                                                                                                                 | 232 |
|   | E.7        | Calcula        | ation of Wall-Normal Velocity                                                                                                                          | 234 |
|   | E.8        | Conver         | sion between Contravariant and Cartesian Components                                                                                                    | 235 |
|   |            | E.8.1          | Vector Quantities                                                                                                                                      | 235 |
|   |            | E.8.2          | Second-Order Tensors                                                                                                                                   | 237 |
|   | E.9        | Calcula        | ation of Pressure Gradient, $\partial P/\partial \zeta$                                                                                                | 238 |
|   |            |                |                                                                                                                                                        |     |

| FТ | ran         | sport E | equations used in STREAM                                                                           |
|----|-------------|---------|----------------------------------------------------------------------------------------------------|
| F  | F.1         | Introdu | ction to Hybrid Curvilinear-Cartesian Coordinates                                                  |
|    |             | F.1.1   | Vector Components                                                                                  |
|    |             | F.1.2   | Covariant Derivative of Vector, <b>v</b>                                                           |
|    |             | F.1.3   | Covariant Derivative of Tensor, T $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |
|    |             | F.1.4   | Gradient of a Scalar, $\nabla \phi$                                                                |
|    |             | F.1.5   | Gradient of a Vector, $\nabla \mathbf{v}$                                                          |
|    |             | F.1.6   | Divergence of a Vector, $\nabla \cdot \mathbf{v}$                                                  |
|    |             | F.1.7   | Divergence of a Tensor, $\nabla \cdot \mathbf{T}$                                                  |
|    |             | F.1.8   | Summary of Transformation Rules                                                                    |
| F  | F.2         | Transp  | ort Equations in Hybrid Coordinates                                                                |
|    |             | F.2.1   | Scalar                                                                                             |
|    |             | F.2.2   | Momentum                                                                                           |
| GC | Othe        | er Wall | Function Options Explored                                                                          |
| C  | <b>J</b> .1 | Subgri  | d Storage Requirements                                                                             |
|    |             | G.1.1   | Wall-Parallel Convection                                                                           |
|    |             | G.1.2   | Calculation of the Subgrid Wall-Normal Velocity                                                    |
|    |             | G.1.3   | Initialization of Subgrid Values                                                                   |
|    |             | G.1.4   | Summary                                                                                            |
| C  | i.2         | Conve   | ction Treatment in Curvilinear Coordinates                                                         |